Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
2.
Cell Metab ; 36(2): 354-376, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38181790

RESUMO

Here, we summarize the current knowledge on eight promising drugs and natural compounds that have been tested in the clinic: metformin, NAD+ precursors, glucagon-like peptide-1 receptor agonists, TORC1 inhibitors, spermidine, senolytics, probiotics, and anti-inflammatories. Multiple clinical trials have commenced to evaluate the efficacy of such agents against age-associated diseases including diabetes, cardiovascular disease, cancer, and neurodegenerative diseases. There are reasonable expectations that drugs able to decelerate or reverse aging processes will also exert broad disease-preventing or -attenuating effects. Hence, the outcome of past, ongoing, and future disease-specific trials may pave the way to the development of new anti-aging medicines. Drugs approved for specific disease indications may subsequently be repurposed for the treatment of organism-wide aging consequences.


Assuntos
Doenças Cardiovasculares , Metformina , Neoplasias , Humanos , NAD , Envelhecimento , Metformina/farmacologia , Metformina/uso terapêutico
3.
Nat Aging ; 4(2): 261-274, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38200273

RESUMO

Epigenetic 'clocks' based on DNA methylation have emerged as the most robust and widely used aging biomarkers, but conventional methods for applying them are expensive and laborious. Here we develop tagmentation-based indexing for methylation sequencing (TIME-seq), a highly multiplexed and scalable method for low-cost epigenetic clocks. Using TIME-seq, we applied multi-tissue and tissue-specific epigenetic clocks in over 1,800 mouse DNA samples from eight tissue and cell types. We show that TIME-seq clocks are accurate and robust, enriched for polycomb repressive complex 2-regulated loci, and benchmark favorably against conventional methods despite being up to 100-fold less expensive. Using dietary treatments and gene therapy, we find that TIME-seq clocks reflect diverse interventions in multiple tissues. Finally, we develop an economical human blood clock (R > 0.96, median error = 3.39 years) in 1,056 demographically representative individuals. These methods will enable more efficient epigenetic clock measurement in larger-scale human and animal studies.


Assuntos
Metilação de DNA , Trabalho de Parto , Gravidez , Feminino , Humanos , Camundongos , Animais , Metilação de DNA/genética , Epigênese Genética , Envelhecimento/genética , Epigenômica/métodos
5.
J Neuroophthalmol ; 44(1): 16-21, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37938114

RESUMO

BACKGROUND: In 2005, we reported 3 patients with bilateral optic nerve damage early in life. These patients had stable vision for decades but then experienced significant bilateral vision loss with no obvious cause. Our hypothesis, novel at that time, was that the late decline of vision was due to age-related attrition of retinal ganglion cells superimposed on a reduced neuronal population due to the earlier injury. EVIDENCE ACQUISITION: The field of epigenetics provides a new paradigm with which to consider the normal aging process and the impact of neuronal injury, which has been shown to accelerate aging. Late-in-life decline in function after early neuronal injury occurs in multiple sclerosis due to dysregulated inflammation and postpolio syndrome. Recent studies by our group in mice have also demonstrated the possibility of partial reversal of cellular aging and the potential to mitigate anatomical damage after injury and even improve visual function. RESULTS: The results in mice and nonhuman primates published elsewhere have shown enhanced neuronal survival and visual function after partial epigenetic reprogramming. CONCLUSIONS: Injury promotes epigenetic aging , and this finding can be observed in several clinically relevant scenarios. An understanding of the epigenetic mechanisms at play opens the opportunity to restore function in the nervous system and elsewhere with cellular rejuvenation therapies. Our earlier cases exemplify how reconsideration of previously established concepts can motivate inquiry of new paradigms.


Assuntos
Esclerose Múltipla , Doenças do Nervo Óptico , Humanos , Camundongos , Animais , Doenças do Nervo Óptico/genética , Nervo Óptico , Células Ganglionares da Retina , Envelhecimento/genética , Transtornos da Visão/genética , Cegueira
6.
Nat Aging ; 4(1): 14-26, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38102454

RESUMO

Over the past decade, there has been a dramatic increase in efforts to ameliorate aging and the diseases it causes, with transient expression of nuclear reprogramming factors recently emerging as an intriguing approach. Expression of these factors, either systemically or in a tissue-specific manner, has been shown to combat age-related deterioration in mouse and human model systems at the cellular, tissue and organismal level. Here we discuss the current state of epigenetic rejuvenation strategies via partial reprogramming in both mouse and human models. For each classical reprogramming factor, we provide a brief description of its contribution to reprogramming and discuss additional factors or chemical strategies. We discuss what is known regarding chromatin remodeling and the molecular dynamics underlying rejuvenation, and, finally, we consider strategies to improve the practical uses of epigenetic reprogramming to treat aging and age-related diseases, focusing on the open questions and remaining challenges in this emerging field.


Assuntos
Células-Tronco Pluripotentes Induzidas , Rejuvenescimento , Humanos , Animais , Camundongos , Envelhecimento/genética , Reprogramação Celular/genética , Epigênese Genética
7.
Cell Reprogram ; 25(6): 288-299, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38060815

RESUMO

Glaucoma, a chronic neurodegenerative disease, is a leading cause of age-related blindness worldwide and characterized by the progressive loss of retinal ganglion cells (RGCs) and their axons. Previously, we developed a novel epigenetic rejuvenation therapy, based on the expression of the three transcription factors Oct4, Sox2, and Klf4 (OSK), which safely rejuvenates RGCs without altering cell identity in glaucomatous and old mice after 1 month of treatment. In the current year-long study, mice with continuous or cyclic OSK expression induced after glaucoma-induced vision damage had occurred were tracked for efficacy, duration, and safety. Surprisingly, only 2 months of OSK fully restored impaired vision, with a restoration of vision for 11 months with prolonged expression. In RGCs, transcription from the doxycycline (DOX)-inducible Tet-On AAV system, returned to baseline 4 weeks after DOX withdrawal. Significant vision improvements remained for 1 month post switching off OSK, after which the vision benefit gradually diminished but remained better than baseline. Notably, no adverse effects on retinal structure or body weight were observed in glaucomatous mice with OSK continuously expressed for 21 months providing compelling evidence of efficacy and safety. This work highlights the tremendous therapeutic potential of rejuvenating gene therapies using OSK, not only for glaucoma but also for other ocular and systemic injuries and age-related diseases.


Assuntos
Glaucoma , Doenças Neurodegenerativas , Camundongos , Animais , Pressão Intraocular , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/terapia , Glaucoma/terapia , Glaucoma/tratamento farmacológico , Retina/metabolismo , Terapia Genética , Modelos Animais de Doenças
8.
Nat Aging ; 3(12): 1486-1499, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38102202

RESUMO

Information storage and retrieval is essential for all life. In biology, information is primarily stored in two distinct ways: the genome, comprising nucleic acids, acts as a foundational blueprint and the epigenome, consisting of chemical modifications to DNA and histone proteins, regulates gene expression patterns and endows cells with specific identities and functions. Unlike the stable, digital nature of genetic information, epigenetic information is stored in a digital-analog format, susceptible to alterations induced by diverse environmental signals and cellular damage. The Information Theory of Aging (ITOA) states that the aging process is driven by the progressive loss of youthful epigenetic information, the retrieval of which via epigenetic reprogramming can improve the function of damaged and aged tissues by catalyzing age reversal.


Assuntos
Metilação de DNA , Epigênese Genética , Teoria da Informação , Histonas/genética
9.
Aging Cell ; 22(12): e14027, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38009412

RESUMO

The NAD+ -dependent deacylase family of sirtuin enzymes have been implicated in biological ageing, late-life health and overall lifespan, though of these members, a role for sirtuin-2 (SIRT2) is less clear. Transgenic overexpression of SIRT2 in the BubR1 hypomorph model of progeria can rescue many aspects of health and increase overall lifespan, due to a specific interaction between SIRT2 and BubR1 that improves the stability of this protein. It is less clear whether SIRT2 is relevant to biological ageing outside of a model where BubR1 is under-expressed. Here, we sought to test whether SIRT2 over-expression would impact the overall health and lifespan of mice on a nonprogeroid, wild-type background. While we previously found that SIRT2 transgenic overexpression prolonged female fertility, here, we did not observe any additional impact on health or lifespan, which was measured in both male and female mice on standard chow diets, and in males challenged with a high-fat diet. At the biochemical level, NMR studies revealed an increase in total levels of a number of metabolites in the brain of SIRT2-Tg animals, pointing to a potential impact in cell composition; however, this did not translate into functional differences. Overall, we conclude that strategies to enhance SIRT2 protein levels may not lead to increased longevity.


Assuntos
Longevidade , Sirtuína 2 , Animais , Feminino , Masculino , Camundongos , Envelhecimento/genética , Animais Geneticamente Modificados/metabolismo , Encéfalo/metabolismo , Longevidade/genética , Sirtuína 2/genética , Sirtuína 2/metabolismo
10.
bioRxiv ; 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37873446

RESUMO

In multiple sclerosis (MS), the invasion of the central nervous system by peripheral immune cells is followed by the activation of resident microglia and astrocytes. This cascade of events results in demyelination, which triggers neuronal damage and death. The molecular signals in neurons responsible for this damage are not yet fully characterized. In MS, retinal ganglion cell neurons (RGCs) of the central nervous system (CNS) undergo axonal injury and cell death. This phenomenon is mirrored in the experimental autoimmune encephalomyelitis (EAE) mouse model of MS. To understand the molecular landscape, we isolated RGCs from mice subjected to the EAE protocol. RNA-sequencing and ATAC-sequencing analyses were performed. Pathway analysis of the RNA-sequencing data revealed that RGCs displayed a molecular signature, similar to aged neurons, showcasing features of senescence. Single-nucleus RNA-sequencing analysis of neurons from human MS patients revealed a comparable senescence-like phenotype., which was supported by immunostaining RGCs in EAE mice. These changes include alterations to the nuclear envelope, modifications in chromatin marks, and accumulation of DNA damage. Transduction of RGCs with an Oct4 - Sox2 - Klf4 transgene to convert neurons in the EAE model to a more youthful epigenetic and transcriptomic state enhanced the survival of RGCs. Collectively, this research uncovers a previously unidentified senescent-like phenotype in neurons under pathological inflammation and neurons from MS patients. The rejuvenation of this aged transcriptome improved visual acuity and neuronal survival in the EAE model supporting the idea that age rejuvenation therapies and senotherapeutic agents could offer a direct means of neuroprotection in autoimmune disorders.

11.
Cell Metab ; 35(10): 1673-1674, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37793341

RESUMO

Alzheimer's disease is often accompanied by disruptions in circadian rhythms, which may exacerbate the disease's progression. In this issue, Whittaker and colleagues demonstrate that the modulation of circadian rhythms by time-restricted feeding can alter the disease trajectory in Alzheimer's mouse models.


Assuntos
Doença de Alzheimer , Ritmo Circadiano , Animais , Camundongos , Modelos Animais de Doenças , Refeições
12.
FEBS Lett ; 597(17): 2196-2220, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37463842

RESUMO

The nicotinamide adenine dinucleotide (NAD+ ) precursor nicotinamide mononucleotide (NMN) is a proposed therapy for age-related disease, whereby it is assumed that NMN is incorporated into NAD+ through the canonical recycling pathway. During oral delivery, NMN is exposed to the gut microbiome, which could modify the NAD+ metabolome through enzyme activities not present in the mammalian host. We show that orally delivered NMN can undergo deamidation and incorporation in mammalian tissue via the de novo pathway, which is reduced in animals treated with antibiotics to ablate the gut microbiome. Antibiotics increased the availability of NAD+ metabolites, suggesting the microbiome could be in competition with the host for dietary NAD+ precursors. These findings highlight new interactions between NMN and the gut microbiome.


Assuntos
Microbiota , Mononucleotídeo de Nicotinamida , Animais , Mononucleotídeo de Nicotinamida/metabolismo , NAD/metabolismo , Antibacterianos , Mamíferos/metabolismo
13.
Aging (Albany NY) ; 15(13): 5966-5989, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37437248

RESUMO

A hallmark of eukaryotic aging is a loss of epigenetic information, a process that can be reversed. We have previously shown that the ectopic induction of the Yamanaka factors OCT4, SOX2, and KLF4 (OSK) in mammals can restore youthful DNA methylation patterns, transcript profiles, and tissue function, without erasing cellular identity, a process that requires active DNA demethylation. To screen for molecules that reverse cellular aging and rejuvenate human cells without altering the genome, we developed high-throughput cell-based assays that distinguish young from old and senescent cells, including transcription-based aging clocks and a real-time nucleocytoplasmic compartmentalization (NCC) assay. We identify six chemical cocktails, which, in less than a week and without compromising cellular identity, restore a youthful genome-wide transcript profile and reverse transcriptomic age. Thus, rejuvenation by age reversal can be achieved, not only by genetic, but also chemical means.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Reprogramação Celular/genética , Senescência Celular/genética , Envelhecimento/genética , Metilação de DNA , Mamíferos
14.
J Endocrinol ; 258(3)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37335200

RESUMO

Reduced expression of the NAD+-dependent deacetylase, SIRT3, has been associated with insulin resistance and metabolic dysfunction in humans and rodents. In this study, we investigated whether specific overexpression of SIRT3 in vivo in skeletal muscle could prevent high-fat diet (HFD)-induced muscle insulin resistance. To address this, we used a muscle-specific adeno-associated virus (AAV) to overexpress SIRT3 in rat tibialis and extensor digitorum longus (EDL) muscles. Mitochondrial substrate oxidation, substrate switching and oxidative enzyme activity were assessed in skeletal muscles with and without SIRT3 overexpression. Muscle-specific insulin action was also assessed by hyperinsulinaemic-euglycaemic clamps in rats that underwent a 4-week HFD-feeding protocol. Ex vivo functional assays revealed elevated activity of selected SIRT3-target enzymes including hexokinase, isocitrate dehydrogenase and pyruvate dehydrogenase that was associated with an increase in the ability to switch between fatty acid- and glucose-derived substrates in muscles with SIRT3 overexpression. However, during the clamp, muscles from rats fed an HFD with increased SIRT3 expression displayed equally impaired glucose uptake and insulin-stimulated glycogen synthesis as the contralateral control muscle. Intramuscular triglyceride content was similarly increased in the muscle of high-fat-fed rats, regardless of SIRT3 status. Thus, despite SIRT3 knockout (KO) mouse models indicating many beneficial metabolic roles for SIRT3, our findings show that muscle-specific overexpression of SIRT3 has only minor effects on the acute development of skeletal muscle insulin resistance in high-fat-fed rats.


Assuntos
Resistência à Insulina , Músculo Esquelético , Sirtuína 3 , Animais , Ratos , Dieta Hiperlipídica , Insulina/metabolismo , Resistência à Insulina/fisiologia , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Sirtuína 3/genética , Sirtuína 3/metabolismo
16.
Ageing Res Rev ; 88: 101939, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37116664

RESUMO

As the global population faces a progressive shift towards a higher median age, understanding the mechanisms underlying healthy brain ageing has become of paramount importance for the preservation of cognitive abilities. The first part of the present review aims to provide a comprehensive look at the anatomical changes the healthy brain endures with advanced age, while also summarizing up to date findings on modifiable risk factors to support a healthy ageing process. Subsequently, we describe the typical cognitive profile displayed by healthy older adults, conceptualizing the well-established age-related decline as an impairment of four main cognitive factors and relating them to their neural substrate previously described; different cognitive trajectories displayed by typical Alzheimer's Disease patients and successful agers with a high cognitive reserve are discussed. Finally, potential effective interventions and protective strategies to promote cognitive reserve and defer cognitive decline are reviewed and proposed.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Reserva Cognitiva , Envelhecimento Saudável , Humanos , Idoso , Fatores de Proteção , Encéfalo
17.
J Clin Endocrinol Metab ; 108(8): 1968-1980, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-36740954

RESUMO

CONTEXT: Nicotinamide adenine dinucleotide (NAD) levels decline with aging and age-related decline in NAD has been postulated to contribute to age-related diseases. OBJECTIVE: We evaluated the safety and physiologic effects of NAD augmentation by administering its precursor, ß-nicotinamide mononucleotide (MIB-626, Metro International Biotech, Worcester, MA), in adults at risk for age-related conditions. METHODS: Thirty overweight or obese adults, ≥ 45 years, were randomized in a 2:1 ratio to 2 MIB-626 tablets each containing 500 mg of microcrystalline ß-nicotinamide mononucleotide or placebo twice daily for 28 days. Study outcomes included safety; NAD and its metabolome; body weight; liver, muscle, and intra-abdominal fat; insulin sensitivity; blood pressure; lipids; physical performance, and muscle bioenergetics. RESULTS: Adverse events were similar between groups. MIB-626 treatment substantially increased circulating concentrations of NAD and its metabolites. Body weight (difference -1.9 [-3.3, -0.5] kg, P = .008); diastolic blood pressure (difference -7.01 [-13.44, -0.59] mmHg, P = .034); total cholesterol (difference -26.89 [-44.34, -9.44] mg/dL, P = .004), low-density lipoprotein (LDL) cholesterol (-18.73 [-31.85, -5.60] mg/dL, P = .007), and nonhigh-density lipoprotein cholesterol decreased significantly more in the MIB-626 group than placebo. Changes in muscle strength, muscle fatigability, aerobic capacity, and stair-climbing power did not differ significantly between groups. Insulin sensitivity and hepatic and intra-abdominal fat did not change in either group. CONCLUSIONS: MIB-626 administration in overweight or obese, middle-aged and older adults safely increased circulating NAD levels, and significantly reduced total LDL and non-HDL cholesterol, body weight, and diastolic blood pressure. These data provide the rationale for larger trials to assess the efficacy of NAD augmentation in improving cardiometabolic outcomes in older adults.


Assuntos
Resistência à Insulina , Sobrepeso , Pessoa de Meia-Idade , Humanos , Idoso , NAD/metabolismo , NAD/uso terapêutico , Mononucleotídeo de Nicotinamida/uso terapêutico , Obesidade , Peso Corporal , Colesterol
18.
Cell Mol Life Sci ; 80(1): 29, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36607431

RESUMO

Technological advancements have facilitated the implementation of realistic, terrestrial-based complex 33-beam galactic cosmic radiation simulations (GCR Sim) to now probe central nervous system functionality. This work expands considerably on prior, simplified GCR simulations, yielding new insights into responses of male and female mice exposed to 40-50 cGy acute or chronic radiations relevant to deep space travel. Results of the object in updated location task suggested that exposure to acute or chronic GCR Sim induced persistent impairments in hippocampus-dependent memory formation and reconsolidation in female mice that did not manifest robustly in irradiated male mice. Interestingly, irradiated male mice, but not females, were impaired in novel object recognition and chronically irradiated males exhibited increased aggressive behavior on the tube dominance test. Electrophysiology studies used to evaluate synaptic plasticity in the hippocampal CA1 region revealed significant reductions in long-term potentiation after each irradiation paradigm in both sexes. Interestingly, network-level disruptions did not translate to altered intrinsic electrophysiological properties of CA1 pyramidal cells, whereas acute exposures caused modest drops in excitatory synaptic signaling in males. Ultrastructural analyses of CA1 synapses found smaller postsynaptic densities in larger spines of chronically exposed mice compared to controls and acutely exposed mice. Myelination was also affected by GCR Sim with acutely exposed mice exhibiting an increase in the percent of myelinated axons; however, the myelin sheathes on small calibur (< 0.3 mm) and larger (> 0.5 mm) axons were thinner when compared to controls. Present findings might have been predicted based on previous studies using single and mixed beam exposures and provide further evidence that space-relevant radiation exposures disrupt critical cognitive processes and underlying neuronal network-level plasticity, albeit not to the extent that might have been previously predicted.


Assuntos
Hipocampo , Exposição à Radiação , Feminino , Camundongos , Masculino , Animais , Sinapses , Potenciação de Longa Duração , Plasticidade Neuronal
19.
Elife ; 112022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36346220

RESUMO

Naturally produced peptides (<100 amino acids) are important regulators of physiology, development, and metabolism. Recent studies have predicted that thousands of peptides may be translated from transcripts containing small open-reading frames (smORFs). Here, we describe two peptides in Drosophila encoded by conserved smORFs, Sloth1 and Sloth2. These peptides are translated from the same bicistronic transcript and share sequence similarities, suggesting that they encode paralogs. Yet, Sloth1 and Sloth2 are not functionally redundant, and loss of either peptide causes animal lethality, reduced neuronal function, impaired mitochondrial function, and neurodegeneration. We provide evidence that Sloth1/2 are highly expressed in neurons, imported to mitochondria, and regulate mitochondrial complex III assembly. These results suggest that phenotypic analysis of smORF genes in Drosophila can provide a wealth of information on the biological functions of this poorly characterized class of genes.


Assuntos
Drosophila , Complexo III da Cadeia de Transporte de Elétrons , Animais , Drosophila/genética , Complexo III da Cadeia de Transporte de Elétrons/genética , Fases de Leitura Aberta , Peptídeos/genética , Peptídeos/química , Neurônios
20.
Mol Biol Evol ; 39(9)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36065792

RESUMO

Sirtuins are a family of proteins that protect against cellular injury and aging; understanding their evolution should reveal fundamental mechanisms governing longevity. "Early-branching" animals such as sea sponges and jellyfish have been understudied in previous analyses of sirtuin diversity. These organisms not only hold important positions at the base of the evolutionary tree, but also have unique aging dynamics that defy convention, such as quasi-immortality and high regenerative capacity. In this study, we survey the evolution of sirtuin proteins in animals, with a focus on the oldest living lineages. We describe previously unrecognized expansions of "Class IV" and "Class I" sirtuins around the origin of animals, raising the number of sirtuin families in the last common ancestor to at least nine. Most of these undescribed sirtuins have been lost in vertebrates and other bilaterian animals. Our work also clarifies the evolution of PNC1 and NAMPT enzymes that carry out the rate-limiting step in sirtuin-related NAD+ biosynthesis. The genes for PNC1 and NAMPT enzymes were both present in the first animals, with the genes being lost a minimum of 11 and 13 times, respectively, over the course of animal evolution. We propose that species with these ancestral gene repertoires are ideal model organisms for studying the genetic regulation of animal longevity and will provide clues to increasing longevity in humans.


Assuntos
Sirtuínas , Envelhecimento , Animais , Humanos , Longevidade/genética , NAD , Sirtuínas/genética , Sirtuínas/metabolismo , Vertebrados/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...